最近一段时间Python已经成为数据科学行业中大火的编程语言,今天技术学派收集了一些较为高效的语言处理Python库。下面分享给大家。
1.NLTK
NLTK是构建Python程序以处理人类语言数据的领先平台。它提供了易于使用的界面,以及用于分类、标记化、词干化、标记、分析和语义推理的一套文本处理库。用于工业强度NLP库的包装器。
在这里还是要推荐下我自己建的Python开发学习群:483546416,群里都是学Python开发的,如果你正在学习Python ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有Python软件开发相关的),包括我自己整理的一份2018最新的Python进阶资料和高级开发教程,欢迎进阶中和进想深入Python的小伙伴
2.Pattern
Pattern是Python编程语言的Web挖掘模块。它多有用于数据挖掘、自然语言处理、机器学习网络分析和
3.Jieba
“结巴”中文分词:做最好的 Python 中文分词组件。精确模式,试图将句子最精确地切开,适合文本分析;全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
4.TextBlob
TextBlob是一个用于处理文本数据的Python库。它提供了一个简单的API用于常见的自然语言处理(NLP)任务,如词性标注,名词短语提取,情感分析,分类,翻译等。
5.SnowNLP
SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典。注意本程序都是处理的unicode编码,所以使用时请自行decode成unicode。
6.TextGrocery
TextGrocery是一个基于LibLinear和结巴分词的短文本分类工具,特点是高效易用,同时支持中文和英文语料。
分享 IT 技术和行业经验,请关注微信公众号:程序员大牛,每天分享干货!